A Fuzzy Integrated Approach to Impedance Control of Robot Manipulators
نویسندگان
چکیده
This paper presents an integrated fuzzy approach to recover the performance in impedance control, reducing the errors in position and force, considering uncertainties in the parameters of the manipulator model and contact surface model. This integrated strategy considers a fuzzy adaptive compensator in the outer control loop that adjusts the manipulator tip position to compensate for uncertainties present in the environment. In the inner loop, a fuzzy sliding mode-based impedance controller compensates for uncertainties in the manipulator model, based on an inverse dynamics control law. The system error, defines the sliding surfaces of the fuzzy sliding controller as the difference between the desired and the actual impedances. In order to evaluate the force/position tracking performance and to validate the proposed control structure, simulations results are presented with a three-degree-of freedom (3-DOF) PUMA robot.
منابع مشابه
Designing an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کاملDiscrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کاملDesign of an Adaptive Fuzzy Estimator for Force/Position Tracking in Robot Manipulators
This paper presents a stable new algorithm for force/position control in robot manipulators. In this algorithm, position vectors are measured by sensors and then used in the control law. Since using force sensor has some issues such as high costs and technical problems, an approach is presented to overcome these issues. In this respect, force sensor is replaced by an adaptive fuzzy estimator to...
متن کاملAn Adaptive Impedance Controller for Robot Manipulators
A desired dynamic behavior of constrained manipulators can be achieved by means of impedance control and various implementations of fixed controllers have been proposed. In this paper, and adaptive implementation is presented as an alternative to reduce the design sensitivity due to manipulator mismatch. The adaptive controller globally achieves the impedance objective for the nonlinear dynamic...
متن کاملVariable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic
In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...
متن کامل